One-dimensional electron transport in Cu-tetracyanoquinodimethane organic nanowires
نویسندگان
چکیده
The temperature and bias voltage dependent electrical transport properties of in situ fabricated Cu-tetracyanoquinodimethane organic nanowire devices are investigated. The low bias conductance and current exhibit a power-law dependence on temperature and bias voltage, respectively. The overall behavior of these nanowires can be well described by a theoretical model of nearly independent parallel chains of quantum dots created by randomly distributed defects. © 2007 American Institute of Physics. DOI: 10.1063/1.2738380
منابع مشابه
Sustained Resistive Switching in a Single Cu:7,7,8,8-tetracyanoquinodimethane Nanowire: A Promising Material for Resistive Random Access Memory
We report a new type of sustained and reversible unipolar resistive switching in a nanowire device made from a single strand of Cu:7,7,8,8-tetracyanoquinodimethane (Cu:TCNQ) nanowire (diameter <100 nm) that shows high ON/OFF ratio (~10(3)), low threshold voltage of switching (~3.5 V) and large cycling endurance (>10(3)). This indicates a promising material for high density resistive random acce...
متن کاملSynthesis and characterization of nanowires Hausmannite (Mn3O4) by solid-state thermal decomposition
In this study, we synthesis one-dimensional (1D) manganese(III) Schiff base coordination polymer [Mn(Brsalophen)(μ1,3-N3)]n by reaction of MnCl2·6H2O and tetradentate Schiff base ligand Brsalophen at the presence of NaN3 in methanol and characterized by elemental analyses (CHN) and FT-IR spectroscopy. It was used as a new precurs...
متن کاملSynthesis and characterization of nanowires Hausmannite (Mn3O4) by solid-state thermal decomposition
In this study, we synthesis one-dimensional (1D) manganese(III) Schiff base coordination polymer [Mn(Brsalophen)(μ1,3-N3)]n by reaction of MnCl2·6H2O and tetradentate Schiff base ligand Brsalophen at the presence of NaN3 in methanol and characterized by elemental analyses (CHN) and FT-IR spectroscopy. It was used as a new precurs...
متن کاملTiO2 nanowire electron transport pathways inside organic photovoltaics.
Charge transport is one of the five main steps in the operation of organic photovoltaics, but achieving balanced hole and electron transport with high mobility has been challenging in devices. Here, we report improved charge transport in organic photovoltaics via incorporation of nanostructured inorganic electron transport materials into the active layers of devices. Co-depositing TiO2 nanowire...
متن کاملOptimized hole injection with strong electron acceptors at organic-metal interfaces.
The energy-level alignment at interfaces between three electroactive conjugated organic materials and Au was systematically varied by adjusting the precoverage of the metal substrate with the electron acceptor tetrafluoro-tetracyanoquinodimethane (F4-TCNQ). Photoelectron spectroscopy revealed that electron transfer from Au to adsorbed F4-TCNQ was responsible for lowering the hole-injection barr...
متن کامل